Lie groups and lie algebras: a physicist's perspective/ Adam M. Bincer.
Publisher: Oxford: Oxford University Press, 2013Description: xiii, 201p. : illISBN: 9780199662920Subject(s): Lie groups | Lie algebrasDDC classification: 512.482Item type | Current location | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|
![]() |
Mahatma Gandhi University Library General Stacks | 512.482 Q3 (Browse shelf) | Available | 52404 |
Browsing Mahatma Gandhi University Library shelves, Shelving location: General Stacks Close shelf browser
No cover image available | ||||||||
512.2 N7 Elements of goup theory for physicsts/ | 512.2 Q6 Group theory in a nutshell for physicists / | 512.42 P0 Rings and modules for beginners/ | 512.482 Q3 Lie groups and lie algebras: | 512.620 285 513 3 Q5 Analysis of categorical data with R / | 512.7 Q5 A brief history of numbers/ | 512.7 Q5;1 A brief history of numbers/ |
Includes bibliographical references (p. [196]-197) and index.
Ch. 1. Generalities -- Ch. 2. Lie groups and lie algebras -- Ch. 3. Rotations: SO(3) and SU(2) -- Ch. 4. Representations of SU(2) -- Ch. 5. The so(n) algebra and Clifford numbers -- Ch. 6. Reality properties of spinors -- Ch. 7. Clebsch-Gordan series for spinors -- Ch. 8. The center and outer automorphisms of Spin(n) -- Ch. 9. Composition algebras -- Ch. 10. The exceptional group G₂ -- Ch. 11. Casimir operators for orthogonal groups -- Ch. 12. Classical groups -- Ch. 13. Unitary groups -- Ch. 14. The symmetric group S[r subscript] and Young tableaux -- Ch. 15. Reduction SU(n) tensors -- Ch. 16. Cartan basis, simple roots and fundamental weights -- Ch. 17. Cartan classification of semisimple algebras -- Ch. 18. Dynkin diagrams -- Ch. 19. The Lorentz group -- Ch. 20. The Poincaré and Liouville groups -- Ch. 21. The Coulomb problem in n space dimensions.
There are no comments on this title.