Lie groups and lie algebras: a physicist's perspective/ Adam M. Bincer.

By: Bincer, Adam MPublisher: Oxford: Oxford University Press, 2013Description: xiii, 201p. : illISBN: 9780199662920Subject(s): Lie groups | Lie algebrasDDC classification: 512.482
Contents:
Ch. 1. Generalities -- Ch. 2. Lie groups and lie algebras -- Ch. 3. Rotations: SO(3) and SU(2) -- Ch. 4. Representations of SU(2) -- Ch. 5. The so(n) algebra and Clifford numbers -- Ch. 6. Reality properties of spinors -- Ch. 7. Clebsch-Gordan series for spinors -- Ch. 8. The center and outer automorphisms of Spin(n) -- Ch. 9. Composition algebras -- Ch. 10. The exceptional group G₂ -- Ch. 11. Casimir operators for orthogonal groups -- Ch. 12. Classical groups -- Ch. 13. Unitary groups -- Ch. 14. The symmetric group S[r subscript] and Young tableaux -- Ch. 15. Reduction SU(n) tensors -- Ch. 16. Cartan basis, simple roots and fundamental weights -- Ch. 17. Cartan classification of semisimple algebras -- Ch. 18. Dynkin diagrams -- Ch. 19. The Lorentz group -- Ch. 20. The Poincaré and Liouville groups -- Ch. 21. The Coulomb problem in n space dimensions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Call number Status Date due Barcode Item holds
Books Books Mahatma Gandhi University Library
General Stacks
512.482 Q3 (Browse shelf) Available 52404
Total holds: 0

Includes bibliographical references (p. [196]-197) and index.

Ch. 1. Generalities -- Ch. 2. Lie groups and lie algebras -- Ch. 3. Rotations: SO(3) and SU(2) -- Ch. 4. Representations of SU(2) -- Ch. 5. The so(n) algebra and Clifford numbers -- Ch. 6. Reality properties of spinors -- Ch. 7. Clebsch-Gordan series for spinors -- Ch. 8. The center and outer automorphisms of Spin(n) -- Ch. 9. Composition algebras -- Ch. 10. The exceptional group G₂ -- Ch. 11. Casimir operators for orthogonal groups -- Ch. 12. Classical groups -- Ch. 13. Unitary groups -- Ch. 14. The symmetric group S[r subscript] and Young tableaux -- Ch. 15. Reduction SU(n) tensors -- Ch. 16. Cartan basis, simple roots and fundamental weights -- Ch. 17. Cartan classification of semisimple algebras -- Ch. 18. Dynkin diagrams -- Ch. 19. The Lorentz group -- Ch. 20. The Poincaré and Liouville groups -- Ch. 21. The Coulomb problem in n space dimensions.

There are no comments on this title.

to post a comment.

M.G University Library, Priyadarshini Hills P.O, Kottayam- 686 560
Ph: 0481-2731018 | http://library.mgu.ac.in
Powered by Koha